ZADACI za učenike osnovne škole * MaTeMaTiKa za osnovce
Na blogu se nalazi više navigacija do menija zadataka i to: za četvrti i peti razred, zatim zadaci za
šesti razred, meni sa zadacima za sedmi razred, kao i meni sa igricama za decu * MaTeMaTiKa

* Za opuštanje igrice: Testiraj reflekse; Vežbe koncentracije - TRI IGRICE *

OS KOSTA DJUKICOŠ Kosta Đukić - UČENIČKI VEB RAD* Autor: Marija Gajević
MaTeMaTiKa za osnovnu školu

Kvadrat racionalnog broja

Kvadrat racionalnog broja

1.Dokazati tvrđenje (-x)2 = x2 .

2. Da li su tačna tvrđenja:
a) Ako je x = y onda je x2 = y2 ;
b) Ako je x2 = y2, onda je i x = y ?

3. Dokazati da je za svako racionalno x broj x2 ³ 0 .

4. Ako je x racionalan broj. šta je veće: x ili x2 ?

5. Da li su tačna tvrđenja :
Ako je x< y onda je i x2Ako je x2 > y2 onda je i x > y ?

6. Uporedi po veličini brojeve: a2, |a2| i |a|2 (a je racionalan broj).

7. Kvadrati prirodnih brojeva završavaju se ciframa 1,4,5,6,9 i 0. Dokazati.

8. Postoje li prirodni brojevi x i y takvi da je:
a) x2 + 5y = 88888888 ;
b) 1998x2 + 5y2 = 123456789 ?

9. Dokazati formule:
(x+y)2 = x2 + 2xy + y2 ;
(x-y)2 = x2 - 2xy + y2 ;

10. Koristeći gornje formule izračunaj: 142, 992, 10022 .

11. Ako je n paran ceo broj onda je n2 paran prirodan broj. Važi li obrnuto ?

12. Izračunaj koliko je (10n + 5)2 i formuliši odgovarajuće pravilo .

13. Koristeći izvedeno pravilo iz prethodnog zadatka izračunati: 152, 452, 1052.

14. Ako je n prirodan broj, da li su moguće jednakosti:
a) 1 + 3 + 5 + ... + (2n-3)+(2n-1) = 9876543;
b) (n-1)2 + n2 + (n+1)2 = 666666?

15. Dokazati formulu: (x-y)(x+y) = x2 - y2 .

16. Izračunaj na najracionalniji način : 19×21, 99×101, 34×26 .

17. Koliko je:
a) 992 - 1;
b) 342 - 16 ;
c) 1012 + 1998 ?

18. Kvadrat celog broja pri deljenju sa 4 daje ostatak 0 ili 1. Dokazati

19. Dokazati da jednačina 4x2 + 5y2 = 10z + t nema rešenja u skupu celih brojeva ako broj t pripada {2,3,7,8}.

20. Dokazati da jednačina 2222x2 + 5555y2 = 99999999 nema rešenja u skupu celih brojeva .