LOGIČKO-KOMBINATORNI ZADACI

ZADACI ZA UVEŽBAVANJE

1. U čaši , balonu i kanti nalaze se : limunada, mleko i voda (u svakom sudu po jedna tečnost ). U kanti nije limunada, a ni mleko. U čaši nije limunada. Koja se tečnost nalazi u kom sudu?

2. Koje su ocene dobili Anka, Branka i Danka ako Anka nema '3', Danka nema '3' i nema '5' , a u odeljenju nema dvojki i jedinica iz matematike.

3. Od tri olovke , jedna je crvena, jedna bela i jedna plava. Označiti olovke sa A, B i C. Koje boje imaju olovke ako je tačno samo jedno od tri tvrđenja. "A je crvena" , "B nije crvena" , "C nije plava".

4. Boris , Dušan , Milica i Višnja su kapiteni sportskih ekipa u svojoj školi. Postavljeno im je pitanje u kojim sportovima se takmiče i oni su dali sledeće izjave : Boris : "Višnjina ekipa igra rukomet , a Milicina košarku". Dušan: "Višnja igra odbojku, a Boris košarku". Milica
:
"Dušan je kapiten odbojkaša , a Boris rukometaša ". Višnja : "Boris predvodi odbojkaše, a Milica šahiste". Ispostavilo se da se kapiteni nedovoljno poznaju. Naime svaki je
istinu rekao samo za jednog sportistu. Odgovoriti kojim ekipama su kapiteni Boris, Dušan, Milica i Višnja.

5. U jednoj vazi je pet karanfila , a u drugoj tri ruže. Na koliko načina se može izabrati jedan karanfil ili jedna ruža? Na koliko načina se može napraviti buket od jednog karanfila i jedne ruže?

6. Od mesta A do mesta B vode tri puta , a od mesta B do mesta C dva puta. Na koliko se načina može stići iz A u C preko B?

7. Na koliko se načina mogu razmestiti 5 učenika na 5 pričvršćenih stolica?

8. Na koliko se načina mogu razmestiti 6 učenika na: a) 9 pričvršćenih stolica ; b) 4 pričvršćene stolice?

9. Koliko se četvorocifrenih brojeve može sastaviti od cifara: a) {1,2,3,4,5,6} ; b) {0,1,2,3,4,5} ako se cifre: a) ne ponavljaju ; b) ponavljaju .

10. Od cifara 0,1,3,5,7,9 napisani su petocifreni brojevi sa pet različiti cifara. Koliko je među njima onih koji nisu deljivi sa 10 ?

11. Koliko dijagonala ima dvanaestougao?

12. Nekoliko drugova, prilikom susreta, su se rukovali jedan sa drugim. Koliko je bilo drugova
ako je bilo 10 rukovanja?

13. U ravni je dato 8 tačaka od kojih su 4 na jednoj pravoj , a od preostalih 4 nikoje
3 nisu na jednoj pravoj. Koliko pravih određuje ovih 8 tačaka?

14. Registracija automobila sadrži jedno slovo azbuke i jedan trocifreni broj (koji ne počinje nulom). Koliko se automobila može na taj način registrovati ?

15. Aca , Miša i Rajko čitaju: "Politiku" , "Novosti" i "Sport" i to svako čita samo jedne novine. Na pitanje, ko od njih čita koje novine njihova drugarica Vera je odgovorila: " Aca je čitao "Politiku", Miša nije čitao "Novosti", a Rajko nije čitao "Politiku". Odgovor je bio tačan samo za jednog čitaoca. Koje novine čitaju Aca, Miša i Rajko?

16. Koliko ima trocifrenih brojeva sa različitim ciframa, ako su sve cifre različite od nule?

17. Na jednoj proslavi svih 20 učesnika rukovali su se međusobno. Koliko je ukupno bilo rukovanja?

MaTeMaTiKa za osnovnu školu